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Abstract 

Possible point groups and elastic properties are discussed 
for a solid with two-dimensional quasiperiodic and one- 
dimensional periodic structures. The point groups and 
Laue classes are given for such structures with Fourier 
modulus of rank 5. The numbers of independent second- 
order elastic constants are calculated and all quadratic 
invariants are derived for all symmetries. 

1. Introduction 

An ever increasing number of structures with perfect 
order, but without lattice periodicity, have been found in 
the past decades. Such structures have been called quasi- 
periodic. In fact, lattice periodicity is a special case of 
quasiperiodicity in which the number of integer indices is 
equal to the dimension of the space. The symmetry 
description for a quasiperiodic structure (QS) may be 
given by an embedding into a higher-dimensional space 
(Bak, 1985; Janssen, 1986). In other words, a quasi- 
periodic structure in a d-dimensional subspace (the 
physical space) V e can be obtained by intersecting this 
space with a lattice-periodic structure in an n-dimen- 
sional embedding space V, which is the direct sum of V e 
and V/. V t is the orthogonal complement of the physical 
spare. The symmetry groups for three-dimensional (3D) 
lattice periodic systems have been known for a long time 
(Hahn, 1983) and their generalizations to higher-dimen- 
sional spaces have been studied by a number of 
scientists. At present, all the symmetry groups have 
been discussed for n = 4, 5, 6, 7, 8 and 9 (Brown, 
Bulow, Neubuser, Wondratschek & Zassenhaus, 1978; 
Ryskov, 1972; Plesken & Pohst, 1980). Owing to the 
distinguished physical subspace, of course, the crystal- 
lography of a QS is not strictly the same as nD 
crystallography. This means that the symmetry groups 
describing QS are nD, satisfying appropriate additional 
requirements. Wijnands & Janssen (1993) formulated the 
additional conditions satisfied by nD crystallographic 
symmetry groups in order to allow QS. Rabson, Mermin, 
Rokhsar & Wright (1991) discussed the space groups of 
axial crystals and quasicrystals with N-fold point 
groups. Meanwhile, significant progress has also been 
made in studying the elasticity of quasicrystals. In the 
density wave picture for quasicrystals, the independent 
components of the phases can be parametrized by a 

phonon field u and a phason field w. By standard 
elasticity theory, the elastic energy can be expressed as a 
function of gradients of these fields. The expression for 
the elastic energy of icosahedral quasicrystals and some 
simple planar quasicrystals have been derived to 
quadratic order in the fields (Levine et al., 1985; Socolar, 
1989). 

In this paper, we would like to discuss point groups 
and elastic properties of all 2D quasicrystals. Here and 
hereafter, a 2D quasicrystal (QC) refers not to a real 
plane but to a 3D solid with 2D quasiperiodic and 1D 
periodic structure unless stated otherwise. Also, we 
restrict our discussion to 2D QCs with Fourier modulus 
of rank 5, i.e. the quasiperiodic plane of rank 4. This is 
the case for 2D QCs observed to date. Our work shows 
that there are ten systems and 57 point groups in this 
case, which can be divided into two kinds, one with 
crystallographically allowable operations (the first kind) 
and the other with crystallographically forbidden opera- 
tions (the second kind). Six systems and 31 point groups 
belong to the first kind. The remaining four systems and 
26 point groups belong to the second kind. Using group 
representation theory, we have calculated the numbers of 
independent elastic constants and the scalar invariants up 
to second order for all 2D QCs with Fourier modulus of 
rank 5. Every system with N-fold (N > 2) rotation can be 
divided into two Laue classes and the QCs belonging to 
the same Laue class possess the same elastic properties. 

The following section is devoted to the point groups of 
2D QCs. The invariants and elastic constants of 2D QCs 
are calculated in §3. Some discussions can be found in ~4. 

2. Point groups 

The symmetry operations used for the description of 2D 
QCs with Fourier modulus of rank 5 can be derived from 
the crystallographic operations that act in a 5D space V 
with a 3D distinguished subspace (the physical space) V e 
and the 2D orthogonal complement V t satisfying some 
additional conditions (Janssen, 1992). Once the symme- 
try operations are determined, we can construct the point 
groups for 2D QCs by the group definition. Consider a 
5D lattice 27 in V with its reciprocal lattice 27*. A 
crystallographic operation R that leaves 27 invariant acts 
on a basis b i (i = 1, 2 . . . . .  5) according to 
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5 

Rbi--  ~_,F(R)jib j ( i =  1,2 . . . . .  5). (1) 
j=l 

The matrix F(R) is integral and of finite order N. Its 
characteristic polynomial has a unique decomposition in 
prime factors: 

f(2) -- det[F(R) - 2E] = 1-If~,(2). (2) 

The roots exp(2rrip/m~,) of the prime polynomial f~(2) 
correspond to eigenspaces which span the space V,, 
where m, is a divisor of the order N of I-'(R) and p is 
relative prime to m~,. Furthermore, we can construct a 
basis for V~, that carries F(R) with characteristic 
polynomial f~,(2). Following the notation used by 
Hermann (1949), R can now be written as 

R_~{m 1,m 2 . . . .  }, ~ E ( m , ) = 5 .  (3) 
/z 

Its order N is the smallest common multiple of the m~'s 
and E(m~,) is the Euler function. If R allows a quasi- 
periodic structure of rank 5 in VE, R is a non-mixing 
operation and leaves V e invariant; besides, the following 
conditions are satisfied: either Vz carries full spaces V~, 
and every corresponding m~ also occurs in the decom- 
position of V E or an invariant subspace of V~, belongs to 
V 1 whereas the remaining 2D subspace belongs to V e. All 
possible 5D crystallographic operations for 3D QSs with 
Fourier modulus of rank 5 are listed by Janssen (1992). 
From these operations, we can derive all the point groups 
of 2D QCs by the group definition provided we notice 
that in the 3D physical space the symmetry operations 
may be N-fold proper rotations or inversion rotations or 
mirrors. 

For example, the point group K 1 = 5 (C5) has the 
representation with 

r ( R )  = 

0 0 0 - 1  O[ 

I 1 0 0 - 1  0 
0 1 0 - 1  O .  
0 0 1 - 1  0 
0 0 0 0 1 

(4) 

The fivefold rotation R is the generator of Kt, which is of 
type {15}. This means that the symmetry operation {15} 
can generate the point group 5. The point group K 2 = 5m 
(Csv) has the representation with 

r ( R O  = 

0 0 0 - 1  0 
1 0 0 - 1  0 
0 1 0 - 1  0 
0 0 1 - 1  0 
0 0 0 0 1 

0 0 0 1 0 I 0 0 1 0 0 
F(R2)= 0 1 0 0 0 .  (5) 

1 0 0 0 0 
0 0 0 0 1 

The fivefold rotation R~ and the mirror R 2 are the 
generators of K 2. The former is of type { 15} and the latter 
is of type {11122}. It follows that the symmetry 
operations {15} and {11122} can generate the point 
group 5m. Similarly, the symmetry operations {15} and 
{21122} can generate the point group 52. 

In this way, we can find all point groups of 2D QCs 
with Fourier modulus of rank 5. It should be noted, 
however, that a quasiperiodic structure is not necessary 
to be associated with non-crystallographic point-group 
symmetry (Janssen, 1992). Thus, it is possible for 
crystallographic symmetry groups to allow QS. This is 
the case for the cubic symmetry (Feng, Lu & Withers, 
1989; Wang, Qin, Lu, Feng & Xu, 1994). Additionally, 
since a twofold rotation and a mirror may be along the 
quasiperiodic plane or the periodic axis, there are six 
point groups (2, 12, m, lm, 2/m and 12/m) in the 
monoclinic case and four point groups (222, 2mm, mm2 
and 2/mmm) in the orthorhombic case, as contrasted with 
conventional crystals which have only three point groups 
for each system, monoclinic or orthorhombic. The point 
groups of 2D QCs with Fourier modulus of rank 5 are 
given in Table 1 (see Appendix A). There are ten 
systems, i.e. triciinic, monoclinic, orthorhombic, tetrag- 
onal, trigonal, hexagonal, pentagonal, decagonal, octag- 
onal and dodecagonal systems, and 57 point groups. 
Among them, six systems and 31 point groups are 
crystallographically allowable, four systems and 26 point 
groups are crystallographically forbidden. 

3. Elastic properties 

In this section, we calculate the numbers of independent 
second-order elastic constants and quadratic invariants of 
2D QCs with the group representation theory. As we 
know, to lowest order, the elastic energy density f is 
composed of quadratic combinations of gradients of the 
phonon field u and the phason field w. Sincefis a scalar, 
these quadratic combinations are form-invariant under all 
of the point-group operations of the structure considered, 
i.e. they transform according to the identity "representa- 
tion of the group. Thus, if we construct all the invariants, 
we can determine f. Moreover, the number of such 
invariants and hence the number of independent elastic 
constants are just the number of times the identity 
representation appears in all possible direct product 
representations under which OjU i and OjW i transform. Here 
it should be noted that: (i) u is a three-component field 
and w is a two-component field; (ii) both u and w are 
only the function of the position vector r = (x 1 , x 2, x3) in 
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the physical space (De & Pelcovits, 1987); (iii) the 
coordinate system is chosen in such a way that the axis x 3 
is along the periodic direction and the axes x~, x 2, x 3 form 
an orthonormal basis; (iv) for crystallographic symme- 
tries u and w, both transform according to the vector-like 
representation, but for non-crystallographic symmetries u 
transforms according to the vector-like representation 
and w transforms according to another non-vector-like 
representation. 

It is obvious that all phonon strains Oju i and phason 
strains Ojw i are centrosymmetric, i.e. under the action of 
the symmetry operation 'inversion' (x i ~ - x i ,  and hence 
ui -+ - u i ,  wi --+ - w i ,  ~i --+ -Oi )  they remain to be 
unchanged. Therefore, elastic properties possess an 
intrinsic (or inherent) centrosymmetry, and hence all 
point groups belonging to the same Laue class (Hahn, 
1983), i.e. those point groups that would become 
identical when a centre of symmetry is added to them, 
possess the same elastic properties. Tables 1 and 2 of the 
present paper are therefore arranged according to Laue 
classes. 

The numbers n c ,  n K and n R of independent elastic 
cons t an t s  Cijkl , Kijkt and Rijkt (Ding, Yang, Hu & Wang, 
1993) for each Laue class have been calculated by the 
method proposed by Yang, Ding, Hu & Wang (1994) 
and listed in Table 1. 

To determine the invariants, let us consider the point 
group K = 5 (C5) generated by a fivefold rotation. 
Obviously, for the phonon field, nine components of Ojui 
transform under 

(/-'1 -k-/-'2) X (/"1 - k / " 2 )  = 3FI + 2/-'2 +/-'3, (6) 

where F 1 is the identity representation, and /"2 and F 3 
are two 2D representations. The former is the vector-like 
representation and the latter non-vector-like, but each of 
them is the direct sum of two 1D conjugate representa- 
tions. Since the antisymmetric components O~u 2 -O2Ul, 
02u 3 - 03u2 and 03u I - 01u 3 transform under F x + /"2  
corresponding to rigid rotations, they do not change the 
elastic energy. Associated with the remaining constituent 
representations are two linear invariants 

//?33, Ell + E22, (7) 

and two quadratic invariants 

(Ell - E22) 2 + 4E~2, E23 + E223, (8) 

where Eij = (Ojui + Oiuj)/2. Thus, five quadratic invari- 
ants are 

(El1-+-E22) 2, E23, E33(Ell  n t- E22), 

E23 + E2 E11E22 _ E2 , (9) 23, 12 

among which the first three are products of two linear 
invariants (7). From (9), it follows that non-vanishing 
elastic constants are 

C1111 = C2222 , C1133 = C2233 , C3333, C2323 = C1313, 

Cl12Z, 2C1212 --  C1111 - CII22. (10) 

The number of independent constants n c - -5 .  For the 
phason field, six components of OjW i transform under 

(/'I + Fz) x /"3 --- F2 + 2/-'3 (11) 

producing five quadratic invariants, i.e. 

(W21 -3 t- W12) 2 .-]- (Wll  - W22) 2, 

W13(W21 - W12) + W23(Wll + W22), 

Wl3(Wli  -3 L W22 ) - W23(W21 - W12), 

w?3 + w 3, 
(Wil  -3 I- W22) 2 + (W21 - W12) 2, 

(12) 

where Wij - -  Ojw i. Non-vanishing elastic constants are 

K, lll= K2222 = Klm 2 = K2121, K1313 ~-K2323, 

KI l l3  =K1322 = K i 2 2 3  = -K2123 , K1221 = -Kl122, 

Kl123 =K2223 =K1321 = -K1213. ( 1 3 )  

The number of independent constants n K = 5. Moreover, 
there are six quadratic invariants coupling u to w, i.e. 

2WI3EI2 + W 2 3 ( E I I  - -  E22), 

WI3(EII  - E22 ) - 2W23E12 , 

(Wl l  -4- W22)(EII - E22 ) --3 I- 2(W21 - WI2)E12 , 

2 ( W l l  + W22)EI2 - (W21 - WI2)(E11 - E20, 

(W21 + WI2)E13 + (Wl I - Wzz)E23 , 

(Wal -k W12)E23 - (Wli  - W22)E13. 

(14) 

Non-vanishing elastic constants are 

R l l l l  = R2211 = R2112 = -R2222 = -R1122 = -R1212 , 

R i l l 2  = RI211 = R2122 = R2212 = -R1222 = -R2111 , 

R1223 ---R2213 --R2123 = - R i l l 3  , 

RI311 = -R1322 "- -R2312 , (15) 

Rl123 = R1213 =-R2113 - -  -R2223 ' 

R1312 ~ R2311 ~-- -R2322. 

The number of independent constants n R = 6. Thus, it 
can be seen that there are 16 quadratic invariants and 
hence 16 independent second-order elastic constants for 
K = 5 symmetry. Among them, five constants are due to 
the phonon field, five constants due to the phason field 
and six constants associated with the phonon-phason 
coupling. 
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In a similar manner, we can construct all invariants for 
all Laue classes of 2D QCs, as listed in Table 2 (see 
Appendix A), where those quadratic invariants that can 
be written as the product of linear invariants are omitted. 
From these results, one can easily obtain the expression 
for the elastic energy of 2D QCs. 

4. Concluding remarks and discussion 

We have given the point groups for 2D QCs with Fourier 
modulus of rank 5. It is shown that there are ten systems, 
18 Laue classes and 57 point groups in this case. Since 
the structures with perfect order, but without lattice 
periodicity, may have crystallographically allowable 
symmetries, a 2D crystallographic point group also 
belongs to the point groups of 2D QCs. There are six 
systems, ten Laue classes and 31 point groups known to 
crystallography. The remaining four systems, eight Laue 
classes and 26 point groups are relevant for non- 
crystallographic symmetries. We have also calculated 
the numbers of independent second-order elastic 
constants and quadratic invariants for all Laue classes 
of 2D QCs. All the results are given in Appendix A. 

In this paper, we have discussed only those 2D QCs 
with the quasiperiodic plane of rank 4. If rank 6 is 

included, 7-, 9-, 14- and 18-fold axes are allowable (Hu, 
Ding, Yang & Wang, 1994). The extension of the above 
treatment to such structures is straightforward. 

Brandmiiller & Claus (1988) derived the forms of 
irreducible tensors of rank 1 to 4 without intrinsic 
symmetries for point groups 5, 5, 10, 10m2, 52, 5m and 
5m. However, they did not consider the phason strains in 
their derivation and hence the results are not appropriate 
for elastic properties of QCs. According to Brandmiiller 
& Claus (1988), the numbers of independent components 
of the fourth-rank tensor without any intrinsic symmetry 
are 19, 19, 10 and 10 for the Laue classes 5, lO/m, 5m 
and lO/mmm, respectively. By considering the intrinsic 
symmetry for elastic constants Cij~t (= Ciikl --  
Cijlk--Cklij ), all these numbers reduce to 5 and the 
corresponding non-vanishing Cot t are C l l l l  --  C2222 , 

C3333, C1133 = C2233, CI313 --" C2323, 2C1212 --  
C~,ll -- C~,22. These results are in good agreement with 
our results (n c = 5) for independent elastic constants 
Cijkt related to the phonon strains as listed in Table 1 and 
equation (10) of the present paper. 

This work was supported by the National Natural 
Science Foundation of China. 

APPENDIX A 

Table 1. Point groups, Laue classes and numbers of independent elastic constants of 2D QCs 

No. of Laue No. of elastic constants 
System classes Point groups nc ntc ne Sum 

Triclinic 1 1, 1 21 21 36 78 
Monoclinic 2 2, m, 2/m 13 13 20 46 

3 12, lm, 12/m 13 12 18 43 
Orthorhombic 4 2mm, 222, mmm, mm2 9 8 10 27 
Tetragonal 5 4, 4, 4/m 7 7 10 24 

6 4mm, 422, 4m2, 4/mmm 6 5 5 16 
Trigonal 7 3, 3 7 7 12 26 

8 3m, 32, 3m 6 5 6 17 
Hexagonal 9 6, 6, 6/m 5 5 8 18 

10 6mm, 622, 6m2, 6/mmm 5 4 4 13 
Pentagonal 11 5, 5 5 5 6 16 

12 5m, 52, 5m 5 4 3 12 
Decagonal 13 10, 10, lO/m 5 3 2 10 

14 lOmm, 1022, 10m2, lO/mmm 5 3 1 9 
Octagonal 15 8, 8, 8/m 5 5 2 12 

16 8mm, 822, 8m2, 8/mmm 5 4 1 10 
Dodecagonal 17 12, 12, 12/m 5 5 0 10 

18 12ram, 1222, 12m2, 12/mram 5 4 0 9 

No. of Laue 
classes Phonon field 

1 E,1,E22, E3s,EI2,E,s, E23, 

2 E,l, E22, E33, E,2, E123, E23, 
ElsE23 

3 E,,, E22, E33, E23, E122, E123 
E,2E,3 

Table 2. Scalar invariants 

Phason field 

W,i, W22, W13, W23, W,2, W2, 

Wl,, W22, W,2, W2,, W?3, W23, W13W23 

w,,, w22, w23, w?3, w?~, w~,, w,~w,2, 
WI3W2,, WlEW21 

Phonon-phason coupling 

WI3Ela, WIaE23, W23E13, W23E23 

Wl3El2, Wl3gl3, W21E12, W21EI3, WI2EI2, WI2E13 
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No. of Laue 
classes Phonon field 

4 Ell , E22, E33, E122, E23, E23 

2 5 E33, E,i  "at- E22, El2, (E,l -- E22) 2, 
E23 "-I- E23, EI2(EII -- E22) 

E33, E,, + E22, (El, - E22) 2, 
(El 2 + E21) 2, E123 n t- E223 

E33, El,  +E22,  
2EI3E,2 + E23(Ell -- E22), 
EI3(E,I -- E22 ) -- 2E23EI2 , 
E123 + E23, El, Ez~ - E~2 

10 

E33, E, ,  +E22,  
2E,3E,2 + E23(E,, - E22), 
E, IE22 - E22, EI23 -1L E23 

E33, El, + E22, E23 "]- E23, 
El lE22 - E22 

E33, El, + E22, E,,E22 - E22, 
E23 --F E23 

E33, E, ,  + E22, E, IE22 - E22, 
E23 + E~3 

12 E33, El, + E22, E23 -t- E223, 
Eu E22 -- E22 

13 

14 

15 

16 

17 

18 

E33, Ell + E22, EI23 + E23, 
El, E22 -- E22 

E33, E,, + E22, EI23 + E23, 
Et,E22 - E22 

E33, E,, + E22, E23 -k E23, 
E,,E22 -- E22 

E33, E,l + E22, E123 + E 2, 
E, i E22 - E~2 

E33, E,, + E22, E23 "-I'- E223, 
E,l E22 -- E22 

E33, E,, + E22, Ei23 + E 2 ,  
EI,E2E - E22 

Table  2 (cont . )  

Phason field 

w,,, w~, w?~, w~3, w?~, w~,, w,~w2, 

W,, -t- W22, Wzl -- W,2, (W,I - W22) 2, 
(W21 -~- W,2) 2, W}3 -'1- Wi3 , 
(Wll -- W22)(W21 + Wl2) 

Wll .-]- W22 , !Wll -- W22) 2, (W2, .dl- W12) 2, 
(w2, - w ,~) ,  w?~ + w ~  

w,, + w~, (w~, - w,o, w?3 + w~, 
(W2, "4- Wl2) 2 "-~ (Wll -- W22) 2, 
W,3(W21 + W12) + W23(Wll -- W22), 
W,3(WI, - W22 ) - W23(W2, -{- W,2 ) 

wH + w~2, (w2, - w l o  ~, w23 + w ~ ,  
(W2, + Wl2) 2 -]-- (W,l -- W22) 2, 
Wl3(W21 -4- W,2 ) -3 t- W23(Wll - W22 ) 

w,, + w~ ,  w2, - w,~, w?~ + w~ ,  
(Wll -- W22) 2 -~- (W2, + W,2) 2 

w,, + 
(Wl, -- W22 ) + (W2, -[- W,2 ) 

(W,l + W22) 2 + (W21 - W,2) 2, 
(W2, --~ WI2) 2 --[- (W,i W22) 2, 
Wl3(Wl, -3 t- W22 ) - W23(W21 -- Wl2), 
Wl3(W21 - W12 ) -Jr- W23(Wll --~ W22 ), 
w?3 + w~3 

(W1, + W22) 2 + (W2, - W,2) 2, 
(Wzl + W,z) 2 + (W,i W22) z, 
w?3 + w ~ ,  
W,3(W2, - Wl2) + W23(W,~ + W22) 

(W,, -a t- W2z) 2 "~- (W21 -- W12) 2, 
(Wll - W22) 2 "31- (W21 -'{- Wl2) 2, 
w?3 + w~3 

w?3 + w~, 
(W,, -- W22) 2 .-~ (W2, -t- W,2) 2, 
(Wl, + W22) 2 + (W21 -- Wl2) 2 

(wl, - w22) 2, (w2, + w , 0  2, w?~ + w~3, 
(W,i -- W23)(W2, -~- W12), 
(Wll -3 t- W22) 2 + (W21 -- Wl2) 2 

(w,, - w~0 2, (w~, + w~2) ~, 
w?3 + w~3, (w,, + w22)" + (w2, - wl2) ~ 

(Wl, - W22) 2, (W21 + Wt2) 2, 
w?~ + w~3, (wl, + w~2) ~ + (w~l - w,2) ~ 
(W,, - W22)(W21 + W,2) 2 

(w,, - w22) 2, (w2, + wl2) 2, w23 + w23, 
(Wl, --[- W22) 2 dl- (W21 -- Wl2) 2 

Phonon-phason coupling 

W,2E,2, W,2EI2, W, aE,3, W23E23 

WI3E13 d-- W23E23, W13E23 - W23EI3, 
(Wll - W22)EI2 , (Wll - W22)(EII - E22), 
(W21 + WI2)E12, (W21 + Wj2)(EII --E22) 

WI3E13 --I'- W23E23, (WII - W22)(EII - E22 ), 
(W2, + WI2)E,2 

2(W2, + W,2)E,2 + (W,, - W22)(EI, - E22), 
(W2, + W12)(E,~ -E22)  - 2(W,, - W22)E12, 
WI3E,2 ..Jr- W23(E,I - E22), W,3(EII - E22 ) - 2Wz3EI2 , 
WI3E,3 -4- W23E23, W,3E23 - W23EI3 , 
(W21 + W,2)Ej3 + (W,, - W22)E2a, 
(W2, + W,2)E23 - (W,, - W22)E,3 

(W21 "1- W,z)EI3 "]- (WI, - W22)E23, 
2WI3EI2 + W23(E,, -- E22), 
2(W2, + WI2)E~2 + (Wll -- W22)(Ell - E22), 
WI3E, 3 + W23E23 

(W,i - W22)(Ell --E22) + 2(W2t + W,2)E~2, 
2(Wl, -- Wz2)E,2 - (W21 + Wi2)(E~l -E22), 
W13E23 -- W23EI3 , W,3EI3 + W23E23 

(Wll -- W22)(EI, - E22) + 2(W2, + W,2)E,2, 
W,3EI3 + W23E23 

2W13El2 + W23(E,I - E22), W,3(E,I - E22 ) - 2W23EI2, 
(W21 -~- W,2)E,3 + (Wl, -- W22)E23, 
(W21 + W,2)E23 - (W,, - W22)E,3, 
(w,i + W22XE,, - E22) + 2(W2, - W,2)E,2, 
2(W,l + W22)E,2 - (W21 - Wl2)(E,, -- E22) 

2WI3E,2 + W23(EI, -- E22), 
(14121 + WI2)EI3 + (Wl, - W22)E23 , 
(W,l + W22)(EI, -- E22 ) + 2(W21 -- W,2)E,2 

(Wll + W22)(Ell - E22 ) + 2(W2l - Wi2)Ei2 , 
2(Wll + W22)E12 -- (Wzl -- WI2)(Ell - E22) 

(Wll -F- W22)(EII - E22 ) .']- 2(W21 - WI2)EI2 

(Wit + W22)(Ett - E22 ) + 2(W2t - Wt2)Et2 , 
2(WI1 + W22)EI2 -- (W21 -- W12)(E11 - E22 ) 

(W u + W22)(EI1 -- E22 ) + 2(W21 - WI2)E12 
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